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The spectral method of Orszag & Patterson has been extended to calculate the static 
pressure fluctuations in incompressible homogeneous decaying turbulence at  Reynolds 
numbers Re, 5 35. In  real space 323 points are treated. Several cases starting from 
different isotropic initial conditions have been studied. Some departure from isotropy 
exists owing to the small number of modes a t  small wavenumbers. Root-mean-square 
pressure fluctuations, pressure gradients and integral length scales have been evaluated. 
The results agree rather well with predictions based on velocity statistics and on the 
assumption of normality. The normality assumption has been tested extensively for 
the simulated fields and found to be approximately valid as far as fourth-order velocity 
correlations are concerned. In addition, a model for the dissipation tensor has been 
proposed. The application of the present method to the study of the return ofaxisym- 
metric turbulence to isotropy is described in the companion paper. 

1. Introduction 
Fluctuations of the static pressure in incompressible, homogeneous, decaying 

turbulence are studied numerically by means of the Galerkin (spectral) method of 
Orszag (1971). This method has been implemented by Orszag & Patterson (1972a) b )  
and has been proved to give reliable results for decaying isotropic turbulence a t  
Reynolds numbers Re, 5 35. For the present purpose this method has been extended 
to calculate the pressure field, which was not computed in the older version. This paper 
describes the method and its application to isotropic turbulence. Results for anisotropic 
homogeneous turbulence are described in the companion paper. Pressure fluctuations 
are of interest with respect to sound generation (Ribner 1964), turbulent diffusion 
(Taylor 1935), structural vibrations (Kadlec & Appelt 1970) and momentum and 
kinetic energy transport (Rotta 1951). 

Experimental investigations of the pressure fluctuations are rare. Most of them are 
confined to measurements of these fluctuations a t  a wall boundary or about sea waves. 
The relevant literature has been reviewed by Willmarth (1975). Pressure fluctuations 
away from boundaries have been studied in the wake ofa  cylinder (Kobashi 1957), in 
a mixing layer (Spencer & Jones 1971)) in jet flows (Arndt & Nilsen 1971; Fuchs 1972; 
Hammersley & Jones 1975) and in the lower atmospheric boundary layer (Elliot 1972). 
Apparently, no direct measurements exist for homogeneous turbulence. 



686 U .  Xchumann and G. S .  Patterson 

Theories which predict turbulent pressure fluctuations if the statistical properties 
of the velocity field are known have been developed for homogeneous and isotropic 
turbulence (Taylor 1935; Heisenberg 1948; Batchelor 1951, 1959; Limber 1951; 
Uberoi 1953, 1954; Ogura & Miyakoda 1954; Kraichnan 1 9 5 6 ~ ) )  for anisotropic and 
shear flow (Kraichnan 1956a, b ;  Ribner 1964) and for wall pressure fluctuations 
(Panton & Linebarger 1974). 

Direct numerical simulations of turbulent pressure fluctuations are reported by 
Deardorff (1970) and Schumann ( 1 9 7 5 ~ )  for channel flows and by Deardorff (1974) for 
the atmospheric boundary layer. Wall pressure fluctuations have been studied numeri- 
cally by Schumann (1975 b).  All these are finite-difference simulations of high Reynolds 
number flows which require some subgrid-scale (SGS) model for that part of the 
turbulent flow not resolvable by the finite-difference grid. 

The spectral method allows us to perform a numerical experiment for homogeneous 
turbulence in which it is simple to ' measure ' pressure fluctuations. The present scheme 
strictly integrates a discretized version of the Navier-Stokes equations without any 
SGS modelling. Owing to the finite capacity of our computers, the range of scales which 
can be resolved is restricted. In the present scheme the ratio of the largest and smallesb 
resolved scales is 16. Consequently, we are restricted to rather low Reynolds numbers 
(approximately Re, < 40) where we can hope to resolve at  least all important scales of 
turbulence, e.g. from the integral length scale down to the Kolmogorov microscale. 
The Reynolds number attainable is, however, comparable with those found in classical 
wind-tunnel experiments, e.g. that of Uberoi (1953, 1954). 

After a short description of the numerical method, the general appearance of the 
flow fields is described and the limitations of the present method are shown. Then some 
empirical relationships between the pressure and velocity statistics are checked and 
the normality of fourth-order velocity correlations is investigated. Finally, some 
empirical models for the kinetic energy dissipation rate and the dissipation tensor are 
deduced. 

2. Spectral pressure calculation 
The numerical procedure for the velocity field and its statistics has been discussed 

by Orszag & Patterson (1972a,b) and by Riley & Patterson (1974). The turbulent 
motion is assumed to satisfy the Navier-Stokes equations for an incompressible flow: 

aupt - YV2U = s - T ( p  + E ) ,  (1)  

v . u  = 0) (2) 

where u = u(x, t )  and p = p(x, t )  are the velocity and kinematic pressure fields, 
respectively, as functions of the real space variable x and time t ,  and 

O - V X U ,  S = U X O ,  E = ~ u . u  (3) 

are the vorticity, the velocity-vorticity cross-product and the kinetic energy. With 
periodic boundary conditions at the surfaces of a cubic box with side L, the velocity 
field (for example) may be expanded in a Fourier series. 

u(x, t )  = 3 O(k, t )  exp (ik. x), (4) 
all k 
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where k = (2n/L) n. For a numerical calculation, the integer vector n is restricted to 
the finite set - &N 6 ni 6 &N (i = 1,2 ,3) ,  where N 3  corresponds to the number of 
points treated in real space. The pressure is eliminated by twice taking the curl of (1) .  
After the Fourier transformation, we have, in wavenumber space, 

dQ/dt + vk2Q = 4, k . Q = 0,  4 = - k-’[k x (k x 6 )I, (5 1 
where B = B(k, t )  is the Fourier transform of s(x, t )  and o ( x ,  t )  is the inverse Fourier 
transform of ikx€i(k,t). The Fourier transforms are computed by using the fast 
Fourier transform and eliminating the aliasing interactions in s as described by 
Patterson & Orszag (1971). 

To compute the pressure itself, we proceed as follows. Taking the divergence of (1)  
gives 

0 = - V . s - V 2 ( p + E )  

and after Fourier transforming we have 
h 8 = -ik-’k.B-E, (7) 

where .@ = .@(k, t )  is the Fourier transform of E ( x ,  t ) .  The real pressure p(x, t )  is corn- 
puted by inverse Fourier transformation of @ = @(k, t ) .  The amount of computer time 
and storage is increased by a factor of $ if the pressure field is calculated in addition to 
the velocity and vorticity fields. The method has been checked against pressure fields 
computed for random velocity fields from the convoli~tion sum (Orszag & Kruskal 
1968) : 

(8) 
1 

@(k , t )  = -- C [k”.Q(k’)] [k.fi(k”)]. 
k2kr+k*,k 

For the present computations, N = 32 and L = rr (in arbitrary units). Starting from 
some random initial values, we step the velocity field forward in finite time steps At, 
using the leapfrog scheme and treating the viscous terms implicitly. 

3. Isotropic homogeneous turbulence simulations 
3.1. Run speciJication and general description 

Four cases, labelled I1-I4, have been run for isotropic turbulence. Initially, the 
Fourier coefficients for the velocity field were chosen to be independent, Gaussianly 
distributed random variables with a prescribed isotropic energy spectrum E(k,  t = 0). 
As stated in the introduction, the present scheme is limited to moderately high 
Reynolds numbers. In addition, in order to limit truncation errors, we must require 
that the energy spectrum decreases sufficiently fast near the upper and lower wave- 
number cut-offs used in the numerical simulation. Initial values with an energy 
spectrum of the form 

&k, 0 )  = 16(2/n)*vg k$’’k k4exp [ - 2(k/kpeaJ2] (9) 

are suitable in this respecb. Such a spectrum is typical for the final period of decay when 
the nonlinear energy transfer is small in comparison with the viscous dissipation 
(Batchelor & Townsend 1948). However, for Re, N 30, we must expect strong energy 
transfer to high wavenumbers. This results in a less rapid decrease in the spectrum at 
high wavenumbers. The spectral form (9) implies a decay of the kinetic energy a.s t+, 
where t is the time and n is of the order of 2.5. 
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Run ... I1 I 2  i3 

Computer-job identification 
E(k, 0) defined by 
k-, wavenumber of energy peakt 
vo, r.m.6. velocity a t  t = Of 
V ,  kinematic viscosity? 
At, time increment? 
tmsx, maximum timet 

Re, (t = t m d  
ReA (t = 0)  

R1 
(9) 
4.76 
1 
0.01189 
0.01 
1 -6 

36.1 
16.4 

c1 
(9) 
9.61 
1 
0.0076 
0.01 
1 -6 

28.1 
9.7 

t Defined in arbitrary but consistent unite. 

TABLE 1. Run specifications, isotropic cases. 

B1 
(10) 
9.61 
1 
0.0076 
0.01 
1.8 

13-3 
11.0 

i4 

ai 
(9) 
9.61 
1 
0.05 
0.01 
1.6 
4.22 
1-29 

Wavenumber shell 

l ( 2  d lkl < 4) 
2 (4 < IkJ < 6) 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 (28 < Ikl < 30) 
15 (30 d Ikl c k,,,) 

k,, = 2 (242)* z 31.2 

TABLE 2 

Number of points 

26 
66 

158 
234 
410 
470 
738 
866 

1170 
1358 
1626 
1970 
2366 
2538 
1162 

A smaller value of n is obtained if the relative energy content at very low wave- 
numbers is increased, since both the viscous dissipation and the nonlinear energy 
transfer are reduced at very low wavenumbers (Batchelor 1959, p. 155). Therefore an 
initial energy spectrum of the form 

might be more appropriate. In  this study we use both types of initial energy spectrum. 
As we are unable to extend the numerical experiments to higher Reynolds numbers, 
we include also some cases with rather low Reynolds numbers so that one may extra- 
polate to higher Reynolds numbers. The initial values for the several runs are given 
in table 1.  Run I1 is statistically identical to run 4 of Kraichnan (1964) (who used the 
direct-interaction approximation) and run 3 of Orszag & Patterson (1972 b), except 
that they used At = 0.004. The truncation errors caused by the larger time increment 
used here have been found to be negligible. Statistical results in wavenumber space are 
obtained by summing over all wavenumbers lying within a shell k - Ak d I kl < k + Ak 
(Ak = 1) .  The number of discrete wavenumber vectors falling in the first shells is small 
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FIUVRE 1. Reynolds numbers vs. time. -, ReL;  ....... Re,. 

(see table 2).  The statistical errors are not small for those quantities which are mainly 
dependent upon the low wavenumber range, and it is therefore desirable to shift the 
peak (at k = kpeak) of the energy spectrum to higher wavenumbers. This has been done 
for cases I2-I4. However, this increases the truncation errors a t  the high wavenumber 
cut-off and thus diminishes the maximum Reynolds number that can be simulated 
accurately. Figure 1 shows the Reynolds numbers Re, and Re, based on the integral 
scale L, and microscale A, respectively, as a function of time t. The definitions of these 
quantities are 

Re, = vLr/v, Re, = vA/v,  

R,l(r) = (ul(x) ul(x+rel)), el = ( L O ,  0). 

Here v is the root-mean square (r.m.s.) velocity, v is the kinematic viscosity, 6 is the 
viscous energy dissipation rate, Ri is the longitudinal second-order two-point velocity 
correlation and the angular brackets denote averaging over the box. The effects of high 
wavenumber truncation can be seen from figure 2 ,  where the skewness 

x = -((au1/az1)3) ((aul/ax1)2)-+ 

is plotted us. time for the four runs. The skewness measures the energy transport from 
low to high wavenumbers by the inertial terms. Any decrease in its value (e.g. as for 
run 1 3 )  indicates that this energy transport is disturbed by the high wavenumber 
cut-off, in that  the energy transport is reflected at  this cut-off and retransported to 
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FIGURE 2. Skewmess coefficient va. time. -, I1 ; - - -, 1 2 ;  -.-, 1 3 ;  --., 14. 

lower wavenumbers. The reduction of S for very low Reynolds numbers (case I4)  
corresponds to the reduction of nonlinear terms by the viscous damping and is in 
accordance with recent measurements by Tavoularis (1977), who found a reduction of 
S for Re, < 5 .  

From figure 1, we see for run I 3  that the Reynolds number Re, becomes virtually 
independent of time, indicating the approach to a self-similar state. Such behaviour 
was predicted for the type of energy spectrum given by (10) by Kraichnan (1964), 
Leith (1967) and Herring (1973) using different turbulence models. 

Figure 3 shows some properties of run I1 a t  t = 0.2 in an xl, x2 plane. The vector plot 
in figure 3 (a)  shows the velocity components u1 and u2. The vorticity component wl, 
the kinetic energy E and the pressure p are given by contour plots. These plots give 
a general impression of the range of scales covered by the present method. The three- 
dimensional space distribution is illustrated for the same run and time in figure 4, where 
perspective views of three-dimensional ‘clouds’ are plotted. In  figure 4(a), within the 
clouds the kinetic energy E is larger than &Emax ( = 3-365); in figure 4 ( b )  the fluctuating 
pressure (mean value zero) is smaller than ps = +pmin (=  - 1.431). Some positive 
correlation between energy and negative pressure, which would be expected if 
Bernoulli’s law holds for turbulent flow, can be recognized. 

The time evolution of the spectral distribution is shown in figure 5 (a )  for case 14. 
Perspective plots of the kinetic energy &(k, t ) ,  the dissipation 2(k, t ) ,  the pressure 
@(k,  t )  and the transfer spectrum p ( k ,  t )  as functions of the wavenumber k ( = K )  and 
time t ( = T) are shown. The same can be seen for case I1 in figure 5 (b ) .  The main 
difference between these runs can be seen from the dissipation plots. Whereas the 
dissipation rate clearly grows at  high wavenumbers during the initial phase of run I1 
(owing to the inertial energy transport), no such piling up can be seen for run 14. On 
the other hand, the energy is distributed over a large number of wavenumber shells in 
run 14, so we can expect good accuracy for this run. For both cases the effect of energy 
loss at low wavenumbers and of energy gain at high wavenumbers by means of the 
inertial terms can be seen from the transfer spectra, which are defined as 

?‘(ko) = c fi(k) .+( - k). 
ka - AkS Ikl< ko+ Ak 
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FIGURE 3. (a)  Velocities {ul, uz}, ( b )  kinetic energy E, ( c )  vorticity w1 and (d) pressure p for run 
I1 a t  time 1 = 0.2 in an zlr zz plane. The maximum vector corresponds to a value of 2.71 for the 
magnitude of the velocities. The contour intervals are 0.2 for energy and pressure and 1.0 for the 
vorticity . 

An inertial range, where P ( k )  z 0 ,  does not exist for these Reynolds numbers. The little 
‘bumps’ in the spectral distribution appear because the number of discrete wave- 
number points in the shells is not strictly proportional to  k2, as can be seen from table 2 .  
For runs I 2  and I 3  the above-mentioned truncation errors become obvious from the 
dissipation spectra shown in figure 6 and from the values of the ratio kK/kmax plotted 
in figure 7;  here k, is the Kolmogorov wavenumber k, = ( c / v ~ ) ~  and is the 
maximum of the resolved wavenumbers (kmax = 31.2 in this simulation). Above the 
Kolmogorov wavenumber the energy content and the dissipation rate are sufficiently 
small to  justify the truncation. However, we shall see that the main results discussed 
in the following chapters are nearly independent of both the initial conditions and time 
as they are mainly dependent upon the low wavenumber range. 
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(a)  (b)  
FIGURE 4. Isosurfaces of (a) kinetic energy E and (b) pressurep in real space (x1,zz,z3) = (X, Y , Z )  
for run I1 at time t = 0.2. Inside the 'clouds' E > 3.365 = +Emax and p < - 1.431 = #p*. 

Some departure from isotropy is illustrated by figures 8 (a) and (b ) ,  which show the 
energy ratios 

r21 = @22(k, t)/-@ll(k, t ) ,  r31 = @33(k, t)/@ll(k, t ) ,  

where Eij(k,  t )  is the energy tensor evaluated from 

@,j(ko:o,t) = z fii(k, t )  O,( - k, t ) .  
ko-Ak< IkI <ko+Ak 

The ratios rZ1 and r31 should be equal to one everywhere in isotropic turbulence. We 
find, however, that in the final period of the decay these ratios tend to approach some 
asymptotic value different from one, especially a t  low wavenumbers. This behaviour 
seems to be a consequence of the small number of points and the resulting anisotropy 
in the first shell. This anisotropy becomes dominant after some time (which is shorter 
for lower Reynolds numbers) as the low wavenumber modes decay considerably more 
slowly than the high wavenumber modes. Similar results have been found by Batchelor 
& Stewart (see Batchelor 1959, figure 5.3), Uberoi (1963) and Bennett (1976) for grid 
turbulence, where the lowest wavenumbers are anisotropic owing to the grid. In  our 
case, however, this effect should disappear if we average over large ensembles. 

3.2. Pressure and fourth-order velocity statistics 

The pressure field is completely determined when the velocity field is known. There- 
fore theories have been developed which predict the correlations between pressure 
fluctuations and any other quantity for isotropic turbulence (Batchelor 1951, 1959, 
5 8.3; Uberoi 1953, 1954; Limber 1951; Kraichnan 1 9 5 6 ~ ) .  In these theories fourth- 
order velocity correlations appear which are not known a priori. All theories have 
assumed that the quadruple correlations are related to the double correlations by the 
following : 

<ui u j  uk ul) = <% uk) <uj ul) -k <ui ul) <uj uk) -k <ui uj)  <uk (11) 
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F I U U ~ E  5. Spectral distribution of the kinetic energy 9, pressure $, dissipation E and transfer 
rate r 218. wavenumber (k = K ,  3 < k < 31) and time ( t  = T ,  0 < t < 1.6) for (a )  run 14 and 
( 6 )  run 11. 
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FIGURE 6. Spectral distribution of dissipation hE(k, t )  for (a) run I2  and ( b )  13.  
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FIGURE 7. Kolmogorov wavenumber kK normalized by the maximum resolved wavenumber 
k,,, us. time. -, I1 ; - - -, 1 2 ;  -. -, 1 3 ;  ....... 14. 

Here the velocities are not necessarily defined a t  the same point. This hypothesis is 
true if the velocity distribution is Gaussian. But even without this condition (which is 
not true for turbulence, since the triple correlations are not all zero) the above assump- 
tion might be valid. 

This assumption has been supported for the velocity field by several experiments 
(e.g. Uberoi 1953; Batchelor 1959, 4 8.1; Frenkiel & Klebanoff 1967; Kuo & Corrsin 
197 1). The later experiments do show, however, large departures from normality for 
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FIGURE 8. Energy ratios tw. wavenumber and time for (a) run I1 and (b) run f4. 
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FIUURE 9. R.m.8. pressure fluctuation normalized by mean-square velocity fluctuations 
vs. time. -, I1 ; - - -, 1 2 ;  - *  -, 1 3 ;  *...**, 14. 
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FIGURE 11. Ratio of microscales (h,/h) and integral scales (L,/L,) for pressure and velocity V8. 
time. -, I1 ; - - -, 1 2 ;  ---, 13;  . . * a * . ,  14. 

the time derivatives of the velocity (which is consistent with the numerical results for 
the skewness plotted in figure 2). 

At very low Reynolds numbers (Re, < 15, Batchelor & Townsend 1948) the longi- 
tudinal double velocity correlation Ri(r) (defined in 5 3.1) is expected to be equal to the 
self-similar form it approaches under pure viscous decay: 

R[(T) = v2[exp -rz/(2A2)]. (12) 

This assumption allows one to evaluate the pressure statistics quantitatively and will 
also be checked. 

Figure 9 shows the computed r.m.8. value of the pressure fluctuations normalized 
by the actual mean-square value of the velocity fluctuations as a function of time for 
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the different runs. We find that this ratio is nearly independent of the initial values and 
of time and is thus independent of the Reynolds number within the range considered 
here. The results are compared in figure 10 with those obtained experimentally by 
Uberoi (1953) and others cited therein. The experimental results are derived from 
second-order velocity correlations using ( 1  1) .  The theoretical value of unity for 
Re, = 0 is based on (12). The numerical experiments give somewhat higher values, 
however, than do the laboratory experiments. 

Next we report the resultant length scales A, and L, as defined by Batchelor (1951). 
Figure 11 shows the ratio of the microscales A, and A ,  where A, is a measure of the 

0 . 4 -  

pressure gradient: 

,/ 0 0 0 - 
a 

/ 
I 

From figure 1 1  we see that the ratio A P I A  is again nearly independent of time and 
initial values. Figure 12 compares these results with those predicted theoretically and 
found experimentally from diffusion experiments (Batchelor 1951 ; Uberoi 1953). The 
theoretical value of (4)B for APIA at Re, = 0 is clearly confirmed. Moreover, the scatter 
of the numerical results appears to be smaIler than that of the experimental results. 

The large-scale spectrum of the pressure fluctuations is characterized by the integral 
length scale Lp : 

R$(r) = ( I l ( X ) P ( X  + .el)). 

The ratio L,/Lj is also plotted us. time in figure 11.  Kraichnan ( 1 9 5 6 ~ )  has proved that 
L,/Lj < 1. Batchelor estimated Lp/Lj M 0.54. From the correlation functions given 
by Uberoi (1953, 1954) we estimate that 

0.57 in., 
0.2 f 0-7in. 

L, M 0.71in., Lp w ( 
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I I 1 

FIQURE 13. Two-point second-order velocity correlations normalized by mean-square velocity 
fluctuations v2 at time t = 0.2 v8. normalized distance for (a) run 13  ( L,= 0.32) and (b )  run 11 
(A, = 0.62). The crosses represent the experimental results of Uberoi (1953) (A, = 0.71 in.). 

The first value follows from the pressure correlation obtained from (11); the second 
pair of values follows from the results obtained directly from the measured fourth-order 
velocity correlations. Thus Uberoi’s experiments give a value of LJL, between 0.3 
and I,  with a best estimate of 0.8. The best estimate from the numerical simulations is 
Lp/Lf E 0.55 for the present range of Reynolds numbers. 

The ratios @2)/v2, AJA and L,/L certainly depend on the shape of the energy 
spectrum and thus depend on the initial values used in these simulations. In fact, such 
differences can be seen for t = 0 in figures 9 and 11. These differences, although partly 
statistical errors, become smaller as time increases. This suggests that the importance 
of the different initial values decreases with increasing time. 

In  order to test the assumption of normality [equation ( II ) ]  we compute repre- 
sentatives of the fourth-order correlations 

(%(XI U j W  Uk(X + r) UdX + r)), (Ui(X) g x )  U k W  udx + r)). 
Using conditions of isotropy and continuity, the above correlations can be represented 
by four independent scalar functions (Uberoi 1953, 1954). These correlations are com- 
puted in real space using the x3 direction as the direction of r and assuming invariance 
under rotation around this axis. Second-order correlation functions are also computed 
for comparison and are normalized by v2. Fourth-order velocity correlations are 
normalized by (u4) = (+Jut + ub + ui)). Second-order pressure correlations and corre- 
lations between pressure and second-order velocity products are normalized by v4. 
To make comparison possible, the separation length r is normalized by the corre- 
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sponding integral length scale L,(t). We show the results for t = 0.2, a time that is large 
enough to allow triple correlations to develop and yet small enough to keep the errors 
due to departure from isotropy small. 

The notation for these correlations, e.g. 

RE"( Irl) = (uAx) U L X )  un(x + r) U,(X + r)>/(u4>9 
is that of Uberoi (1953). The subscripts belong to those quantities (velocity component 
or pressure) which are defined at position x whereas the superscripts refer to the 
quantities a t  x + r. The values of these indices are 1, m, n or p ,  where 1 refers to the 
velocity component parallel to r, m to the velocity component in one possible direction 
perpendicular to r and n to the third orthogonal component; p is used if the quantity 
is the fluctuating pressure. 

Figures 13(a) and ( b )  show the resultant second-order correlations for runs I 3  and 
Il, both a t  t = 0.2. We see reasonable agreement between measurements and the 
computations for run 13.  Some departure from the isotropic state can be seen here in 
that the correlations are different from unity for r = 0. (The general shape agrees even 
better for later times, but then the errors due to departure from isotropy increase.) 
Figures 14(a) and ( b )  show the fourth-order velocity correlations for runs I 3  and Il, 
for t = 0.2. Agreement between the computed values (full line) and the measured 
values is fair. Excellent agreement is found between the values computed directly and 
those which follow from the  second-order correlations with use of (1  1).  Figures 15 (a)  
and ( b )  show the pressure correlations. The second-order pressure correlations RpP(r) 
are compared with the experimental results of Uberoi (1953), which have been com- 
puted from the measured second-order correlations using 

The dashed curve is the result obtained from (13) using the computed second-order 
velocity correlations. The latter agrees much better with the directly computed values 
than do the experimental values. It appears that the main errors in the experimental 
results come from the computation of the pressure statistics from measured velocity 
correlations. Uberoi (1953, 1954) himself remarks that because of experimental scatter 
and the need for computing differences and differentials the resultant pressure statistics 
are quite uncertain. 

If Rf(r) is given by (12), then (13) results in 
Rg(r) = (R!(r))2. 

This approximation is also plotted in figure 15 (dotted curve). We see that this approxi- 
mation is not valid for run 13.  It is valid, however, for run 14,  where the Reynolds 
number is very low (see figure 15b).  Some of the departure is due to anisotropy. 

Figure 15 includes the results for the correlations between pressure and velocity 
products: R i  and REn. No experimental results are available for these correlation 
functions. Starting from the theory deduced by Limber (195 1)  [using (1  l)] we get 

(We take this opportunity to correct some errors inUberoi (1954) for these correlations.) 
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If we use these results and (12) we get 

where 
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FIGURE 14. Fourth-order two-point velocity correlations normdized by +(ut + u: + ui) at time 
t = 0.2 w8. normalized distance for (a) run 13  and ( b )  run 11. The crosses represent the experi- 
mental results of Uberoi (1953). The dotted curves are the predictions from second-order corre- 
lations assuming normality. 

is the 'error integral'. For the given microscale A ,  the above results were computed 
and are shown in figure 15 (b) .  We see for run I 4  that the general shape is the same but 
that the amplitude of the variations is different. This might indicate some errors in the 
assumption [equation (1  i)]; however, the significance is small. 

If (1 1) holds, the ratio - 2(Rl(O) + 2R%,(O))/Rg(O) should be one (Uberoi 1954), the 
flatness factor (Q(u: + ui + u:))/v4 should be three and the skewness (Q(u2 + u: + u;))/v3 
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FIGURE 17. Normalized dissipation w8. time. -, I1 ; - - -, 1 2 ;  -*-, 1 3 ;  . a * . - * ,  14. 

should be zero for isotropic turbulence. All these estimates are confirmed by the 
numerical results shown in figure 16. 

3.3. Dissipation rate 

According to the well-accepted inertial-subrange theory (e.g. Batchelor 1959, 5 6.1) 
the ratio &Lf/E% ( E  = 4 (u . u)) should be a number of order unity and nearly constant. 
This is not true for low Reynolds numbers, as can be seen from figure 17, especially for 
run 14. Similar results have been found by Kraichnan (1964), Orszag & Patterson 
( 1 9 7 2 ~ )  and Herring (1973). The inertial-subrange theory assumes that the dissipation 
rate is mainly determined by the energy transfer effected by the inertial terms. How- 
ever, at low Reynolds numbers the direct viscous dissipation a t  low wavenumbers 
(characterized by L,) becomes important too. Following Rotta (195 1 ), we therefore 

where B, and B, are numbers which should be only slightly dependent upon the 
Reynolds number and the initial valuesused. If the Reynolds number Re, = (*)$ E + L f / v  
is large, the first term becomes negligible. If this Reynolds number approaches zero, 
the second term becomes zero. Assuming Ri(r) to be given by (12), we get 

L; = 47rrh2 (19) 

which corresponds to B, = 577 NN 15.7. (20) 

and therefore 6 = iOVE/h, = 5 n v E / L ? ,  
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FIQURE 18. Normalized dissipation vs. Reynolds number. -, 11 ; - - -, 1 2 ;  -.-, 1 3 ;  
...... , 14; +, Herring (1973) ; - ,equation (18), B , + B , ( ~ ) ~  ReL. 

The ratio e,fvEL; z B, + (#)4 B, Re, (21) 

is plotted vs. Re, in figure 18. Here time decreases as Re, increases. All curves show 
some increase in the normalized dissipation rate owing to vortex-line stretching in the 
initial phase. The right end point of each curve corresponds to time t = 0. Here the 
dissipation results from purely viscous effects and when normalized should equal B,. 
We find that these points do agree, according to (20), for runs I l ,  I 2  and I4, where the 
initial spectrum is close to the self-similar form for Re,, -+ 0. The departure for run I3  
is a consequence of the different initial energy spectrum. After some time a maximum 
in the normalized dissipation is reached owing to the inertial energy transfer; the 
dissipation then decreases again as the inertial transfer is damped by the viscous 
effects. The appropriate value of B, is determined by the slope of the line which is 
tangential to the experimental curves after the initial development of the flow and 
pasaes through (0 ,  Bl) .  Case I1 has insufficient data and case I 3  differs owing to the 
energy spectrum. From case I 4  and especially case I 3  we find B, z 0.7, which is in 
reasonable agreement with the experimental results (B, z 0.9 +_ 0.2) reported by 
Batchelor (1959, figure 6.1, constant A E B,($)*). Herring’s (1973) results do confirm 
the assumption in (1 8) but give somewhat different values for B, and B,, which seems 
to be a consequence of the different initial spectrum. Herring used 

&(k, 0) = A ~ ( I  + 2 t k ~ )  exp ( -  2 8 ~ ) .  

The crosses in figure 18 mark the values which are computed some time after the 
self-similar state has been reached. 
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The principal difference between the initial energy spectra (9) and (10) becomes 
obvious if we determine the value of n in an assumed power law E N tbn. This exponent 
is deduced from figure 19, which depicts the decay of energy as a function of time on 
logarithmic scales. The slopes at the final times correspond to n = 2.3, 1.6, 1.0 and 1.7 
for cases Il, 12, I 3  and I 4  respectively. Actually the slopes are still varying at the final 
time 1.6 used up to now. Therefore additional data are included for case I1 up to 
t,,, = 15. From these we expect final decay laws with n z 2.5 for cases using the 
initial spectrum (9) and n z 1.0 for (10). These results are not discordant with theories 
(Leith 1967) and experimental data: Uberoi (1963) and Comte-Bellot & Corrsin (1966)) 
for example, found n = 1.1 & 0.2 for high Reynolds numbers; Batchelor & Townsend 
(1948) and Bennett (1976) measured n FZ 2.5 for Reynolds numbers which are of 
comparable size to those of the numerical study. This shows that the decay law is not 
directly dependent on the Reynolds number rather than on the type of initial spectrum, 
which in turn might depend on the Reynolds number. 

3.4. Dissipation tensor for small departures from isotropy 

Although runs I l - I4  were designed to be isotropic they are not completely so. Thus we 
get non-zero values for the off-diagonal components of the energy and dissipation 
tensors E,, and e,,, and the diagonal components are not generally equal, Here 

au, au, 
ax, ax, Eij = (uiuj), E = iE i i ,  eij = 2v(- -), e = i ekk .  

We use the convention that repeated subscripts are summed from one to three. If 
the Reynolds number is large enough the dissipation tensor should be isotropic even 
if the energy tensor is anisotropic. For very low Reynolds numbers these tensors are 
directly proportional to each other. Following Corrsin (1973) and Naot, Shavit & 
Wolfshtein (1973, 1974), we therefore propose the following model: 

eij % e z  $€[Sij(l -d)+(3Eij/Ekk)d], (22 1 
where d is a function of Re, and possibly other parameters and S,, is the Kronecker delta. 
AS d should be 1 for Re, = 0 and 0 for Re, = 00, we propose 

(23) 

Using the present runs we determine d for each time step from a least-squares fit, 

d = 1/( 1 + aRe,) , 

where a is an empirical constant. 

so that 3 3  

F ( d )  = I: (e,,-ez(d))2 = minimum. 
, = l j = 1  

The resultant values d( t )  are plotted us. Re,(t) in figure 20, where time decreases as Re,, 
increases. For t = 0 the values of d are close to 1, which means that no local isotropy 
exists initially. After some time the anisotropy at  the high wavenumbers (where most 
of the dissipation is concentrated) is diminished, whereas the anisotropy a t  low wave- 
numbers (where most of the energy is concentrated) is not reduced to the same degree. 
Therefore d is diminished and the final value d(Re,) should be determined by these 
smaller values. The line corresponding to (23) with 01 = 0.1 seems to be an appropriate 
fit for this final state. 

24 F L M  88 
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4. Summary 
The spectral method of Orszag & Patterson (1972a, 6 )  has been extended to simulate 

the fluctuating pressure field in homogeneous turbulence. The resultant statistics have 
been evaluated for decaying isotropic turbulence. The Reynolds number Re, varies 
between 1 and 36. Different initial energy spectra have been assumed. A n  energy 
spectrum of the form k exp ( - k) is close to a self-similar shape and results in correlation 
functions (figure 13a) and decay laws (figure 19) which agree reasonably well with 
experimental results for even rather large Reynolds numbers. The errors due to  a 
truncated Fourier-series representation are, however, considerably smaller for an 
energy spectrum of the form Pexp  ( - k2). The decay law for this initial spectrum 
corresponds well to those found experimentally for small Reynolds numbers. For the 
ratios (pz) /vz ,  h,/h and L,/L,, the shape of the initial spectrum has been found to be 
of small importance. 

We found the r.m.s. value of the pressure fluctuations normalized by the mean- 
square velocity to be about 0.9 at Re, % 30 and about 1.0 at Re,  w 0. The microscale 
of the pressure fluctuations is about 0.7 times the microscale of the velocity fluctua- 
tions; the integral length scales of the pressure and velocity fluctuations have a ratio 
of about 0-55. All these results agree well with experimental and theoretical findings. 
From the scatter of the numerical results around smoothed curves one can estimate 
(see figures 9 and 11) that the statistical errors are of the order of 10% for these 
quantities. This suggests that the numerical experiments give somewhat more accurate 
results than known laboratory experiments where the scatter is at least of the order 
of 30 yo for these quantities (see, for example, figure 12). The statistical errors in the 
numerical simulations are due to the finite amount of data from which we computed 
mean values. Reduction of these errors would require the expensive generation of a 
larger ensemble and this has not been feasible for this study. 

The theoretical and experimental results were all based on the assumption of 
normality of fourth-order velociby correlations. The normality assumption has been 
verified for these simulations; the departure lies within the limits of statistical error. 
This result, which is surely very helpful in estimating pressure statistics, cannot be 
used, however, to close turbulence models for the first, second and third velocity 
moments: it  has been shown by Ogura (1963) that use of the normality assumption can 
lead to non-realizable flows (e.g. negative energy). The assumption 

Ri(r) z v2 exp ( - r2/2h2) 

has been confirmed for small Reynolds numbers. This assumption allows analytical 
solutions for the different correlations investigated here. For the correlation between 
pressure and second-order velocity products, this analytical solution is given in 

Owing to the small number of modes represented by the finite Fourier series at small 
wavenumbers, the initial conditions are not completely isotropic here. This departure 
from isotropy becomes dominant during the final period of the decay. It was possible, 
therefore, to study the total rate of viscous dissipation as well as its tensorial distribu- 
tion. For both, simple empirical models have been deduced which can be used in 
practical turbulence model integrations. 

The results presented here show the applicability of bhe method to low Reynolds 

(14)-( 17). 
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number simulations of turbulent pressure and velocity fields. Anisotropic homo- 
geneous turbulence is studied in the companion paper. 
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advanced computer graphics routines used here and assisted in their application, 
and M. Frydrych, who adapted the isosurface plotting routine to the data management 
used in the spectral code. Also, we are very grateful to the referees for several con- 
structive suggestions. This work was done while U. Schumann was with the Advanced 
Study Program at the National Center for Atmospheric Research, which is sponsored 
by the National Science Foundation. 
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